Wear Evaluation on Turning Inserts Superficially Modified with Titanium Nitride by HIPIMS
نویسندگان
چکیده
منابع مشابه
Evaluation of Flank Wear of Iron-rich Binder Carbide Cutting Tool in Turning of Titanium Alloy
Despite the fact that Titanium material has been considered as difficult to cut material, its usage has been increasing day by day in all engineering sectors; wherever criticality is encountered. Many studies are going on in view of increasing tool life at high cutting speed to improve productivity. In this study, attempt has been made to see the effect of iron as a partial substitution along ...
متن کاملCarbon Nitride and Carbon Fluoride Thin Films Prepared by HiPIMS
I Abstract The present thesis focuses on carbon-based thin films prepared by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS). Carbon nitride (CN x : 0 < x < 0.20) as well as carbon fluoride (CF x : 0.04 < x < 0.35) thin films were synthesized in an industrial deposition chamber by reactive magnetron sputtering of graphite in Ne/N 2 , Ar/N 2 , Kr/N...
متن کاملTitanium Aluminium Nitride and Titanium Boride Multilayer Coatings Designed to Combat Tool Wear
The lifetimes and the premature wear of machining tools impact on manufacturing efficiencies and productivities. A significant proportion of machining tool damage can be attributed to component wear. Here, titanium aluminium nitride (TiAlN) multi-layered with titanium diboride (TiB2) prepared by PVD (Physical Vapour Deposition) sputtering onto H-13 substrates are studied as potential wear-resis...
متن کاملModeling of Tool Wear in Turning EN 31 Alloy Steel using Coated Carbide Inserts
The experimental investigations of the tool wear in turning of EN 31 alloy steel at different cutting parameters are reported in this paper. Mathematical model has been developed for flank wear using response surface methodology. This mathematical model correlates independent cutting parameters viz. cutting speed, feed rate and depth of cut with dependent parameters of flank wear. This model is...
متن کاملMachinability evaluation of Titanium alloy in Laser Assisted Turning
The use of titanium and its alloys has increased in various industries recently, because of their superior properties of these alloys. Titanium alloys are generally classified as difficult to machine materials because of their thermo-mechanical properties such as high strength-to-weight ratio and low thermal conductivity. Laser Assisted Machining (LAM) improves the machinability of high strengt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tribology in Industry
سال: 2018
ISSN: 0354-8996,2217-7965
DOI: 10.24874/ti.2018.40.03.03